WizardCoder is a Code Large Language Model (LLM) that has been fine-tuned on Llama2 and has demonstrated superior performance compared to other open-source and closed LLMs on prominent code generation benchmarks.
You can now try out wizardCoder-15B and wizardCoder-Python-34B in the Clarifai Platform and access it through the API.
The world of coding has been revolutionized by the advent of large language models (LLMs) like GPT-4, StarCoder, and Code LLama. WizardCoder is taking things to a whole new level. WizardCoder is a specialized model that has been fine-tuned to follow complex coding instructions. It leverages the Evol-Instruct method to adapt to coding tasks, making it a powerful tool for developers.
Evol-Instruct is an evolutionary algorithm that generates diverse and complex instruction data for Large-scale Language Models (LLMs). It is designed to enhance the performance of LLMs by providing them with high-quality instructions that are difficult to create manually.
Evol-Instruct works by generating a pool of initial instructions(52k instruction dataset of Alpaca), which are then evolved through a series of steps to create more complex and diverse instructions. Once the instruction pool is generated, it is used to fine-tune an LLM, resulting in a new model called WizardCoder. The fine-tuning process involves training the LLM on the instruction data to improve its ability to generate coherent and fluent text in response to various inputs.
For WizardCoder, the Prompt should be as following:
You can run the WizardCoder-15 B Model using Clarifai’s Python client.
Check out the Code Below:
You can also run WizardCoder-15 B Model using other Clarifai Client Libraries like Javascript, Java, cURL, NodeJS, PHP, etc here
Try out the WizardCoder-15B and WizardCoder-Python-34B models here: https://clarifai.com/wizardlm/generate/models/wizardCoder-15B and https://clarifai.com/wizardlm/generate/models/wizardCoder-Python-34B
WizardCoder can be used for a variety of code-related tasks, including code generation, code completion, and code summarization. Here are some examples of input prompts that can be used with the model:
The 34B model is not just a coding assistant; it’s a powerhouse capable of:
WizardCoder beats all other open-source Code LLMs, attaining state-of-the-art (SOTA) performance, according to experimental findings from four code-generating benchmarks, including HumanEval, HumanEval+, MBPP, and DS-100.
WizardCoder-Python-34B has demonstrated exceptional performance on code-related tasks. The model has outperformed other open-source and closed LLMs on prominent code generation benchmarks, including HumanEval (73.2%), HumanEval+, and MBPP(61.2%).
WizardCoder-Python-34B-V1.0 attains the second position in HumanEval Benchmarks, surpassing GPT4 (2023/03/15, 73.2 vs. 67.0), ChatGPT-3.5 (73.2 vs. 72.5) and Claude2 (73.2 vs. 71.2).
WizardCoder-15B-v1.0 model achieves the 57.3 pass@1 on the HumanEval Benchmarks, which is 22.3 points higher than the SOTA open-source Code LLMs including StarCoder, CodeGen, CodeGee, and CodeT5+. Additionally, WizardCoder significantly outperforms all the open-source Code LLMs with instructions fine-tuning, including InstructCodeT5+, StarCoder-GPTeacher, and Instruct-Codegen-16B
© 2023 Clarifai, Inc. Terms of Service Content TakedownPrivacy Policy
© 2023 Clarifai, Inc. Terms of Service Content TakedownPrivacy Policy