Helsinki-NLP - Romance Language to English Translation
Introduction
The Helsinki-NLP models are used to translate text from one language to another. As such, the model takes a block text as its input, and outputs the translated block of text. This particular model takes in romance language text blocks as it's input and outputs English text.
The allowed input languages include: French, Spanish, Portuguese, and Italian.
Note that this model is not able to handle Romanian language input.
Limitations
The usage of random capitalization and punctuation may result in erroneous translations grammatically speaking. If you are using this model in a workflow and find grammar issues, you can try utilizing aggregators to minimize errors.
There has been a lot of recent interest in the natural language processing (NLP) community in the computational processing of language varieties and dialects, with the aim to improve the performance of applications such as machine translation, speech recognition, and dialogue systems. Here, we attempt to survey this growing field of research, with focus on computational methods for processing similar languages, varieties, and dialects. In particular, we discuss the most important challenges when dealing with diatopic language variation, and we present some of the available datasets, the process of data collection, and the most common data collection strategies used to compile datasets for similar languages, varieties, and dialects. We further present a number of studies on computational methods developed and/or adapted for preprocessing, normalization, part-of-speech tagging, and parsing similar languages, language varieties, and dialects. Finally, we discuss relevant applications such as language and dialect identification and machine translation for closely related languages, language varieties, and dialects.
Risks, Limitations, and Biases
CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.
There has been significant research exploring bias and fairness issues with language models. Some important papers in this field include:
Abstract: Technology for language generation has advanced rapidly, spurred by advancements in pre-training large models on massive amounts of data and the need for intelligent agents to communicate in a natural manner. While techniques can effectively generate fluent text, they can also produce undesirable societal biases that can have a disproportionately negative impact on marginalized populations. Language generation presents unique challenges for biases in terms of direct user interaction and the structure of decoding techniques. To better understand these challenges, we present a survey on societal biases in language generation, focusing on how data and techniques contribute to biases and progress towards reducing biases. Motivated by a lack of studies on biases from decoding techniques, we also conduct experiments to quantify the effects of these techniques. By further discussing general trends and open challenges, we call to attention promising directions for research and the importance of fairness and inclusivity considerations for language generation applications.
Authors: Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, Shmargaret Shmitchell
Abstract: The past 3 years of work in NLP have been characterized by the development and deployment of ever larger language models, especially for English. BERT, its variants, GPT-2/3, and others, most recently Switch-C, have pushed the boundaries of the possible both through architectural innovations and through sheer size. Using these pretrained models and the methodology of fine-tuning them for specific tasks, researchers have extended the state of the art on a wide array of tasks as measured by leaderboards on specific benchmarks for English. In this paper, we take a step back and ask: How big is too big? What are the possible risks associated with this technology and what paths are available for mitigating those risks? We provide recommendations including weighing the environmental and financial costs first, investing resources into curating and carefully documenting datasets rather than ingesting everything on the web, carrying out pre-development exercises evaluating how the planned approach fits into research and development goals and supports stakeholder values, and encouraging research directions beyond ever larger language models.