Speech-to-Text, often referred to as Automatic Speech Recognition (ASR), is a technology that uses machine learning to convert human speech into text. It's a common technology that many of us encounter every day – think of Siri, Okay Google, or any speech dictation software.
Automatic Speech Recognition or ASR, involves using Machine Learning to turn spoken words into written text. This field has seen tremendous growth in the last decade, with ASR systems becoming a common feature in everyday applications like TikTok and Instagram for live captions, Spotify for podcast transcripts, Zoom for meeting notes, and many others.
Most ASR voice technology begins with an acoustic model to represent the relationship between audio signals and the basic building blocks of words. Acoustic models are a type of statistical model used to convert spoken language, which is in the form of an audio signal, into a sequence of linguistic units, typically phonemes, words, or subword units. Traditional ASR systems involve a multi-step process, including language modeling and pronunciation dictionaries.
The End-to-End Automatic Speech Recognition (ASR) model is a revolutionary approach in the field of speech technology. Unlike acoustic ASR systems, which involve multiple intermediate steps such as phoneme recognition and language modeling, the End-to-End ASR model aims to directly convert spoken language into text in a single step. It achieves this using advanced deep learning techniques, often leveraging architectures like convolutional neural networks (CNNs) or transformer-based models. This streamlined approach offers several advantages, including greater simplicity, improved accuracy, and the ability to handle diverse accents and speaking styles more effectively.
Clarifai, a leading AI platform, offers a compelling solution with its state-of-the-art End-to-End Automatic Speech Recognition (ASR) models.
Here's why you should consider using best speech to text models through Clarifai's API.
Clarifai contains large amounts of state-of-the-art Speech-to-Text models in the platform which can be used for multiple purposes. Few of the most popular models are:
Chirp: Universal speech model (USM)
Chirp is a state-of-the-art speech model with 2B parameters trained on 12 million hours of speech and 28 billion sentences of text, spanning 300+ languages. This 2 billion-parameter speech model developed through self-supervised training on extensive audio and text data in over 100 languages. It boasts an impressive 98% accuracy in English and over 300% improvement in various languages with fewer than 10 million speakers.
Chirp's uniqueness lies in its training approach. Initially, it learned from millions of hours of unsupervised audio data across multiple languages and then fine-tuned itself with limited supervised data for each language. This approach contrasts with traditional speech recognition methods that rely heavily on language-specific supervised data.
Key Results
USM model, fine-tuned on YouTube Captions data, performs exceptionally well in 73 languages, with an average word error rate of less than 30%, surpassing Whisper by 32.7%. The USM model also shows lower word error rates on various ASR tasks, such as CORAAL, SpeechStew, and FLEURS. USM excels in quality compared to Whisper in speech translation tasks across different language segments based on resource availability.
Try out Chirp model here https://clarifai.com/gcp/speech-recognition/models/chirp-asr
Assembly AI
AssemblyAI's Speech-to-Text model, known as Conformer-2, represents the latest advancement in automatic speech recognition. It is trained on an extensive dataset comprising 1.1 million hours of English audio data. Conformer-2 builds upon its predecessor, Conformer-1, by offering substantial improvements in handling proper nouns, alphanumerics, and robustness to noisy audio.
The Conformer-2 is a speech recognition model based on the Transformer architecture with added convolutional layers for improved dependency capture. It offers excellent modeling capabilities. The Conformer-2 aims to create an efficient speech recognition model while maintaining the Conformer's strong modeling capabilities.
Conformer-2 builds on the original release of Conformer-1, improving both model performance and speed. Conformer-1 model achieved state-of-the-art performance (previous results).
Key Results:
Conformer-2 maintains parity with Conformer-1 in terms of word error rate but takes a step forward in many user oriented metrics. Conformer-2 achieves a 31.7% improvement on alphanumerics, a 6.8% improvement on Proper Noun Error Rate, and a 12.0% improvement in robustness to noise. These improvements were made possible by both increasing the amount of training data to 1.1M hours of English audio data (170% of the size of data compared to Conformer-1) and increasing the number of models used to pseudo label data.
Try out Assembly AI ASR model here: https://clarifai.com/assemblyai/speech-recognition/models/audio-transcription
Whisper-large
Whisper ASR model, notable for its robustness and accuracy in English speech recognition. Whisper-Large is trained on a large-scale weakly supervised dataset that includes 680,000 hours of audio, covering 96 languages. The dataset also includes 125,000 hours of X→en translation data. The models trained on this dataset transfer well to existing datasets zero-shot, removing the need for any dataset-specific fine-tuning to achieve high-quality results. Model excels in handling accents, background noise, and technical language. It's capable of transcription in multiple languages and translating them into English.
Whisper may not outperform specialized models on benchmarks like LibriSpeech, it excels in zero-shot performance across diverse datasets, making 50% fewer errors than other models. Whisper's strength lies in its large and diverse dataset, approximately one-third of Whisper's audio dataset is non-English, and it effectively learns speech-to-text translation, surpassing supervised state-of-the-art models in CoVoST2 to English translation zero-shot tasks.
Try out Whisper-large model here: https://clarifai.com/openai/transcription/models/whisper
You can access and run the speech-to-text Model using Clarifai’s Python client.
Check out the Code Below for the Whisper Model:
Try out the gcp-chirp, assembly-audio-transcription, whisper-large models
Evaluating an Automatic Speech Recognition (ASR) model is a critical step in assessing its performance and ensuring its effectiveness in converting spoken language into text accurately. The evaluation process typically involves various metrics and techniques to measure the model's quality. Here are some key aspects and methods for evaluating ASR models:
Speech-to-Text Models can be used for various speech recognition tasks, including transcription of audio recordings, voice commands, and speech-to-text translation. These models can be applied to different languages and accents, making it useful for multilingual applications.
Checkout the platform here, and don't hesitate to connect with us for any questions or exciting ideas you want to share.
© 2023 Clarifai, Inc. Terms of Service Content TakedownPrivacy Policy
© 2023 Clarifai, Inc. Terms of Service Content TakedownPrivacy Policy